
Case Example 11:

Problem, Code, and Data Complexity
Complexity is one of the most subtle and subjective factors in all of
software estimating. SRM uses three different forms of complexity:

 Problem complexity
 Code complexity
 Data complexity

See the detailed document below for examples of inputs. The reason that
complexity is subjective is that the same set of problems is not equally
complex to all people. For example an expert in cyber-security might
regard building a new firewall application as a low complexity problem.
But to a novice in cyber-security the same firewall would be very high in
complexity because they have no prior experience. Thus complexity is close
to being a reciprocal of experience levels.

Experts tend to evaluate problem and data complexity as being lower than
novices. Of course code complexity has exact quantification. The widely
used "cyclomatic complexity" metric, calculates code complexity based on
graph theory and a control flow graph of the modules in an application.
Cyclomatic complexity uses the formula of "graph edges minus nodes plus
2." Code that has no branches has a cyclomatic complexity value of 1. As
branches increase, cyclomatic complexity also increases. Modules with
cyclomatic complexity scores above 10 tend to be buggy and difficult to
test. However for problem complexity (the algorithms and research
needed) and for data complexity (files and data relationships) only
subjective metrics exist.

It is best to experiment with the SRM complexity settings by running SRM
against completed projects where complexity is understood and team
members are available to explain complexity values.

Java Language for all 3 Cases

Iterative development for all 3 cases

High, Average, and Low Complexity Levels

$7,500 per month for all 3 Cases

Problem complexity = difficulty of algorithms and logic

Code complexity = difficulty due to branches and poor comments (cyclomatic complexity)

Data complexity = number and interactions among files and data sets

Complexity varies with team and personal experience levels

A project can be very complex to novices; very simple to experts

High complexity increases functon points; degrades quality; lowers productivity

2017 is the 30th anniversary of IFPUG function point metrics

High Average Low

Complexity Complexity Complexity Complexity scores = 1 (minimum) to 11 (maximum)

Problem complexity 9 6 3 Logical difficulty of application

Code Complexity 9 6 3 Cyclomatic complexity of code

Data complexity 9 6 3 Number of files, data elements, relationships

Function Points 1,120 1,000 880 High complexity increases function points

Language level 5.50 6.00 6.50

LOC per FP 58.18 53.33 49.23 High complexity increases LOC per function point

Logical code lines 58,182 53,333 49,231 High complexity increases code size

Project Risks

Cancellation 24.37% 13.20% 9.85%

Negative ROI 30.87% 16.74% 12.48%

Cost overrun 26.81% 14.79% 10.84%

Example 11: How Software Risk Master (SRM) Evaluates Software Complexity

Schedule slip 32.50% 17.95% 13.14%

Unhappy customers 19.50% 11.44% 7.88%

Litigation 10.72% 5.82% 4.33%

Technical debt/high

COQ

27.40% 14.88% 11.08%

Cyber attacks 16.70% 9.07% 6.75%

Financial Risk 35.97% 19.53% 14.54%

High waranty repairs 25.26% 13.72% 10.21%

Poor maintainability 18.84% 10.23% 7.62%

RISK AVERAGE 24.45% 13.40% 9.88% High complexity increases all risks

Total Defects in

Application

6,600 3,000 2,100 High complexity raises defect potentials

Pre-Test Defect Removal % 42.00% 70.00% 84.00% High complexity lowers defect removal efficiency

Defects Removed 2,772 2,100 1,764

Defects Remaining 3,828 900 336

Test Defect Removal % 66.00% 82.00% 93.00%

Defects Removed 2,526 738 312

Defects Remaining 1,302 162 24

Bad fix injection % 11.00% 7.00% 4.00% High complexity raises bad-fix injection rates
Bad fixes (new bugs in

repairs)

143 11 1

Defects detected but not

repaired

prior to delivery to customers 433 35 2 High complexity increases unrepaired defects

Cumulative Defect

Removal %

80.28% 94.60% 98.88% All projects should top 96% defect removal efficiency

(DRE)

DRE developed by IBM circa 1973
Total Defects Removed 5,298 2,838 2,076

Total Defects

Delivered

1,445 173 24 High complexity increases delivered defects

High-Severity Defects

Delivered

260 24 3 High complexity raises defect severity levels

Security Flaws

Delivered

35 3 0 High complexity raises security flaws delivered with

software

Average monthly cost $7,500 $7,500 $7,500

OVERALL PROJECT

Development Schedule

(months)

16.98 13.80 12.45 High complexity stretches out schedules

Staff (technical + management) 10 7 6 High complexity increases staffing

Development Effort (staff

months)

170 99 75 High complexity increases effort months

Development Costs $1,273,683 $739,492 $560,032 High complexity increases costs

DEVELOPMENT ACTIVITES

Requirements Effort (staff

months)

16.00 8.00 7.00

Design effort (staff months) 22.00 15.00 10.00

Coding effort (staff months) 45.00 24.00 20.00

Testing effort (staff months) 50.00 28.00 23.00

Documentation effort (staff

month)

15.00 6.00 6.00

Management effort (staff

months)

22.00 9.00 9.00

TOTAL EFFORT (Staff

months)

170.00 90.00 75.00

Function points per

month

5.88 11.11 13.33

Work hours per FP 22.44 11.88 9.90

LOC per month 342.25 592.59 656.41

Total Cost of

Development

$1,275,000 $675,000 $562,500

Total Cost of

Maintenance

$1,650,000 $625,000 $110,000 High complexity raises maintenance costs

Total Cost of

Enhancement

$575,000 $300,000 $200,000 High complexity raises enhancement costs

TOTAL COST OF

OWNERSHIP (TCO)

$3,500,000 $1,600,000 $872,500 High complexity raises TCO

TCO per Function

Point

$3,500.00 $1,600.00 $872.50 High complexity raises TCO $ per function point

TCO per K Lines

of Code

$60.16 $30.00 $17.72 High complexity raises TCO $ per KLOC

END OF EXAMPLE

